\qquad

Binomial Theorem for Expansion Practice Sheet 1

Expand the binomial using the Binomial Theorem.

1. $(10 x+12 y)^{1}$
2. $(6 x+5 y)^{2}$

3. $(3 x+5 y)^{4}$
4. $(x+2 y)^{3}$
5. $(15 x+14 y)^{1}$

Tons of Free Math Worksheets at: © www.MathWorksheetsLand.com
\qquad

Binomial Theorem for Expansion Practice Sheet 1

ANSWER KEY

1. Step 1: Binomial expressions contain two terms.

The first terms is seen as a^{n} and the last term is seen as b^{n}.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.
$(a+b)^{0}=1$
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

Step 2: In this case, the binomial is raised to the first power, so we will use this formulae:
$(a+b)^{1}=a+b$

Step 3: We will insert our values into the formula:
$(10 x+12 y)^{1}$
Answer: $5 x+6 y$
2. Step 1: Binomial expressions contain two terms.

The first terms is seen as a^{n} and the last term is seen as b^{n}.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.
$(a+b)^{0}=1$
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
\qquad

Step 2: In this case, the binomial is raised to the second power, so we will use this formulae:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

Step 3: We will insert our values into the formula:
$(6 x)^{2}+2(6 x)(5 y)+(5 y)^{2}$
Answer: $36 x^{2}+60 x y+25 y^{2}$
3. Step 1: Binomial expressions contain two terms.

The first terms is seen as a^{n} and the last term is seen as b^{n}.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.
$(a+b)^{0}=1$
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
Step 2: In this case, the binomial is raised to the fourth power, so we will use this formulae:
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

Step 3: We will insert our values into the formula:
$(3 x)^{4}+4(3 x)^{3}(5 y)+6(3 x)^{2}(5 y)^{2}+4(3 x)(5 y)^{3}+(5 y)^{4}$
Answer: $81 x^{4}+540 x^{3} y+1350 x^{2} y^{2}+1500 x y^{3}+625 y^{4}$
4. Step 1: Binomial expressions contain two terms.

The first terms is seen as a^{n} and the last term is seen as b^{n}.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.
$(a+b)^{0}=1$

Tons of Free Math Worksheets at: © www.MathWorksheetsLand.com
\qquad
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

Step 2: In this case, the binomial is raised to the third power, so we will use this formulae:

$$
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

Step 3: We will insert our values into the formula:
$(x)^{3}+3(x)^{2}(2 y)+3(x)(2 y)^{2}+(2 y)^{3}$
Answer: $x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}$
5. Step 1: Binomial expressions contain two terms.

The first terms is seen as a^{n} and the last term is seen as b^{n}.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.
$(a+b)^{0}=1$
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
Step 2: In this case, the binomial is raised to the first power, so we will use this formulae:
$(a+b)^{1}=a+b$

Step 3: We will insert our values into the formula:
$(15 x+14 y)^{1}$

Answer: $15 x+14 y$

