Name	Date
Binomial Theorem for Expansion P Expand the binomial using the Binomia	ractice Sheet 1 al Theorem.
1. (10x + 12y) ¹	
2. $(6x + 5y)^2$	
3. (3x + 5y) ⁴	

4. $(x + 2y)^3$

5. $(15x + 14y)^{1}$

Name

Date ___

Binomial Theorem for Expansion Practice Sheet 1

ANSWER KEY

1. Step 1: Binomial expressions contain two terms.

The first terms is seen as aⁿ and the last term is seen as bⁿ. When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.

 $(a + b)^{0} = 1$ $(a + b)^{1} = a + b$ $(a + b)^{2} = a^{2} + 2ab + b^{2}$ $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$

Step 2: In this case, the binomial is raised to the first power, so we will use this formulae: $(a + b)^{1} = a + b$

Step 3: We will insert our values into the formula: $(10x + 12y)^{1}$

Answer: 5x + 6y

2. Step 1: Binomial expressions contain two terms.

The first terms is seen as aⁿ and the last term is seen as bⁿ. When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.

$$(a + b)^{0} = 1$$

$$(a + b)^{1} = a + b$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

Date ___

Step 2: In this case, the binomial is raised to the second power, so we will use this formulae:

 $(a + b)^2 = a^2 + 2ab + b^2$

Step 3: We will insert our values into the formula: $(6x)^2 + 2(6x)(5y) + (5y)^2$

```
Answer: 36x^2 + 60xy + 25y^2
```

3. Step 1: Binomial expressions contain two terms.

The first terms is seen as aⁿ and the last term is seen as bⁿ. When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.

$$(a + b)^{0} = 1$$

 $(a + b)^{1} = a + b$
 $(a + b)^{2} = a^{2} + 2ab + b^{2}$
 $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$
 $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$
Step 2: In this case, the binomial is raised to the fourth power, so
we will use this formulae:
 $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$

Step 3: We will insert our values into the formula: $(3x)^4 + 4(3x)^3(5y) + 6(3x)^2(5y)^2 + 4(3x)(5y)^3 + (5y)^4$ Answer: $81x^4 + 540x^3y + 1350x^2y^2 + 1500xy^3 + 625y^4$

4. Step 1: Binomial expressions contain two terms. The first terms is seen as a^n and the last term is seen as b^n . When binomial expressions are raised to a power, they can be expanded using the following expansion formulas. $(a + b)^0 = 1$

Tons of Free Math Worksheets at: © www.MathWorksheetsLand.com

 $(a + b)^{1} = a + b$ $(a + b)^{2} = a^{2} + 2ab + b^{2}$ $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$

Step 2: In this case, the binomial is raised to the third power, so we will use this formulae:

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Step 3: We will insert our values into the formula: $(x)^3 + 3(x)^2(2y) + 3(x)(2y)^2 + (2y)^3$

Answer: $x^3 + 6x^2y + 12xy^2 + 8y^3$

5. Step 1: Binomial expressions contain two terms.
The first terms is seen as aⁿ and the last term is seen as bⁿ.
When binomial expressions are raised to a power, they can be expanded using the following expansion formulas.

 $(a + b)^{0} = 1$ $(a + b)^{1} = a + b$ $(a + b)^{2} = a^{2} + 2ab + b^{2}$ $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $(a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$ Step 2: In this case, the binomial is raised to the first power, so we will use this formulae: $(a + b)^{1} = a + b$

Step 3: We will insert our values into the formula: $(15x + 14y)^{1}$

Answer: 15x + 14y