No clickers \& YES calculators.

Get the mini-lab from the podium.

Have your notebook ready!!

8.3 Equilibrium

I. Center of mass
A. The point on an object that moves in the same way that a point particle would move.
B. Look at Fig. 8-11 on page 211 of the wrench -
C. How to find the center of mass

1) Suspend an object from any point and draw a vertical line when the object stops swinging from that the suspension point.
2) Suspend an object using another point and draw a second vertical line when the object stops swinging from that point.
3) Where the 2 vertical lines intersect is the center of mass

Mar 23-11:48 AM

Correct pg. 208 21-24 for accuracy.
21. When r is doubled, I is multiplied by a factor of 4.
22. The more of the mass that is located far from the center, the greater the moment of inertia. Thus, the hollow ball has a greater value of I.
23. The moment of inertia is greater when rotating around sphere A.
24. rotation about sphere $A=5 \mathrm{mr}^{2}=0.020 \mathrm{~kg} \mathrm{~m}^{2}$ rotation about sphere $C=2 \mathrm{mr}^{2}=.0080 \mathrm{~kg} \mathrm{~m}^{2}$
pg. 210 25-29 all for completion
25. $16 \mathrm{rev} / \mathrm{s}$
26. 9.0 N
27. 5.5 N
28. 4.3 N
29. 7.7 N
F. Conditions for Equilibrium

1. Static equilibrium
a) velocity and angular velocity = \square or are constant
b) Object must be in translational equilibrium
(net force on an object = O)
c) Object must be in rotational equilibrium (net torque on an object = ©)
G. Rotating Frames of reference
2. Centrifugal "Force"
a) NOT a true force
b) Feeling of being thrown out of rotational motion
(fall out a door when going around a corner)
pulled toward the outer edge of a rotating object
c) Actually due to Inertia

- body wants to go straight
d) Rotating frames of reference are: accelerated
e) Centripetal acceleration is proportional to the distance from the axis of rotation and depends on the SQUARE of the angular velocity.
Ex: the rotational frequency $=6$
the centripetal acceleration increases by a factor of

Mar 23-12:37 PM

Mar 24-1:09 PM

