No clickers and YES CALCULATORS!!

Have out pg. 205

Get the Moment of Inertia notes from the brown table.

8.2 The moment of Inertia

**Compare swinging motion of dumbells
a) Center and held close to the body
b) End and far from the the body.

Harder to stop \& change direction when weight is farther away.

8.2 The moment of Inertia

a) Resistance to rotation
b) Symbol is I
c) EQUATION: $I=m r^{2}$

The Moment of Inertia depends on the shape of an object TABLE 8-2 or page 206

1) Where is mass located at an object.
2) Bicycle wheel weight is an outside edge: $I=m r^{2}$

3) To observe how the moment of inertia depends on the location of the rotational axis, hold a book in the upright position and put your hands at the bottom of the book. Feel the torque needed to rock the book toward and away from you.

Mar 21-9:09 AM

> Example:
> The baton twirler Cindy is practicing twirling. The length of the baton is 0.80 m and the mass of the rubber ball on each end is 0.50 kg . Find the moment of inertia of the baton as Cindy rotates it by the midpoint. Calculate the moment of inertia if she holds it by one end.
> a) $r=1 / 2 l$ Rotates on midpoint $1 / 2(0.8) r .4 \mathrm{~m}$
> b) Single mass
> on one end.
> $I=(\cdot 3)(\cdot 4)^{2}=.08 \mathrm{Kgm}^{2}$
> $\begin{gathered}\text { Double the distance } \\ \text { Inertia is } \times 4\end{gathered}$

