No clickers \& yes calculators.
Have out the 3.9 w.s. to correct.
Do the chapter 3.7-3.10 review from the brown table.

$$
\begin{aligned}
& X^{4}-8 \mid=0 \\
& +81=81 \\
& \sqrt{x^{4}}=\sqrt{81} \\
& \sqrt{x^{2}}=\sqrt{9} \quad x= \pm 3 \text { Real } \\
& \sqrt{x^{2}}=\sqrt{-9} \quad x= \pm 3 i \text { Complex } \\
& \frac{16 x^{2}}{}=\frac{1}{16} \sqrt{16} \\
& \sqrt{x^{4}}=\sqrt{\frac{1}{16}} \\
& \sqrt{x^{2}}=\sqrt{\frac{1}{4}} \quad \begin{array}{l}
x^{2}+\sqrt{-\frac{1}{4}} \\
x=+\frac{1}{2} \\
x= \pm \frac{1}{2} i
\end{array}
\end{aligned}
$$

Oct 28-12:00 PM

Graphing polynomials with repeated zeros

- Graph $f(x)=(x-1)(x-2)(x-3)(x-4)$
-What are the zeros? $x=1 x=2 x=3 x=4$
- What happens to the graph at those er
- What are the zeros? $x=1 x^{2}(\mathrm{x}-2)(\mathrm{x}-3)=2 x=3$
- What happens to the graph at
- Graph $f(x)=(x-1)^{3}(x-2) \quad \mathbb{X}-$ axis
- What are the zeros? $X=\| x=2$

Gothrowgh taxis

- Graph $f(x)=(x-1)$
-What are the zeros?
- What happens to the graph at those zeros? Bounces Back

Generalizations about functions, graphs and Rational Zeros

No clickers \& yes calculators.
Have out the 3-10 notes to complete.

Finding all the zeros of a function

- $F(x)=x^{3}-x^{2}-8 x+12$
- How many zeros? 3
- How many zeros?
- How many show on the graph?
- Are any duplicates that you see? 0 ?
- Are any duplicates that you

Decimal

- Use synthetic division to test for multiples of 3 or 4 if you
$f(x)=(x+3)$

Finding all the zeros of a function $x=-1.41$

- $F(x)=x-2 x+2$
$x=1.41$
- How many zeros? 3
$x=1$
- How many show on the graph 3 What are the?
- Are any duplicates that you see? ND
- Are any irrational? We can't use thy as decimals!
- Us synthetic vision to find the irrational or imaginary

$x^{2}-2=0 \sqrt{x^{2}}=\sqrt{2}$

$$
f(x)=(x-\sqrt{2})(x+\sqrt{2})(x-1)
$$

Oct 28-12:00 PM

Finding all the zeros of a function

- $F(x)=x^{4}-256$
- How many zeros?
- How many show on the graph? What are the?
- Are any duplicates that you see?
- Are any irrational? We can't use them as decimals!
- Use synthetic division to find the irrational or imaginary
zeros.

$$
x^{4}=256
$$

```
Writing the factors if the Zero is a
Fraction
- You can't leave fractions (or decimals) in the
parentheses.
- The denominator becomes the coefficient
- \((\mathrm{x}-1 / 2)\)
- \((x-3 / 4)\)
- \((x+1 / 4)\)
```


Apr 26-10:51 AM

